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We propose a rigorous method for removing rigid-body motions from a given molecular dynamics
trajectory of a flexible macromolecule. The method becomes exact in the limit of an infinitesimally
small sampling step for the input trajectory. In a recent paper [G. Kneller, J. Chem. Phys. 128, 194101
(2008)], one of us showed that virtual internal atomic displacements for small time increments can be
derived from Gauss’ principle of least constraint, which leads to a rotational superposition problem
for the atomic coordinates in two consecutive time frames of the input trajectory. Here, we demon-
strate that the accumulation of these displacements in a molecular-fixed frame, which evolves in time
according to the virtual rigid-body motions, leads to the desired trajectory for internal motions. The
atomic coordinates in the input and output trajectory are related by a roto-translation, which guaran-
tees that the internal energy of the molecule is left invariant. We present a convenient implementation
of our method, in which the accumulation of the internal displacements is performed implicitly. Two
numerical examples illustrate the difference to the classical approach for removing macromolecular
rigid-body motions, which consists of aligning its configurations in the input trajectory with a fixed
reference structure. © 2011 American Institute of Physics. [doi:10.1063/1.3626275]

I. INTRODUCTION

The construction of trajectories representing the internal
motions of a flexible macromolecule from a molecular dy-
namics (MD) trajectory is a recurrent task in biomolecular
simulations. Such trajectories are particularly useful for the
analysis of spectroscopic experiments probing the total dy-
namics of the molecule, but where the internal dynamics is of
particular interest. Examples are combined experimental and
simulation studies of proteins in solution by nuclear magnetic
resonance (NMR) relaxation spectroscopy1–4 and by quasi-
elastic neutron scattering.5

The common strategy to extract the internal motions from
a given MD trajectory is to align the snapshots of the protein
with a common reference structure. The coordinate frame as-
sociated with that structure can be considered as the Eckart
frame of the molecule, referring to the early work of Eckart on
the theory of spectroscopic experiments on small molecules
in the gas phase.6 Eckart considered only small vibrations
as possible internal motions and assumed the internal energy
of the molecule to be a quadratic function of the atomic dis-
placements. Observing that rigid-body displacements do not
alter the internal potential energy of the molecule, he con-
structed conditions for the atomic displacements correspond-
ing to internal motions of the molecule which exclude rigid-
body displacements, and he also described a construction of
a molecule-fixed frame describing the global motions of the
molecule.

a)Author to whom correspondence should be addressed. Electronic mail:
gerald.kneller@cnrs.orleans.fr.

Shortly later Eckart’s approach was generalized by
Sayvetz to linear and “anomalous” molecules, which were
excluded in Eckart’s work.7 Here “anomalous” refers to
molecules which have internal motions of large amplitudes,
such as rotations of methyl groups, which cannot be treated
within the approximation of small vibrations. Motivated by
the observation by Kudin and Dymarsky that the Eckart axis
conditions are closely related to the problem of an optimal
rotational superposition of molecular structures,8 one of us
(G.R.K.) has recently shown that virtual atomic displacements
describing the internal motions in arbitrary macromolecules
can be derived from Gauss’ principle of least constraint,9

which leads indeed to a rotational superposition problem of
molecular structures.10 The adjective “virtual” indicates that
the internal displacements are reconstructed from a “real” tra-
jectory including global and internal motions. At each time,
one considers the motion that a virtual rigid molecule would
have performed within an infinitesimal time interval, given
the same initial atomic positions, velocities, and forces. The
internal atomic displacements are then the differences be-
tween the real displacements and the displacements due to an
infinitesimal virtual rigid-body motion. According to Gauss’
formulation of mechanics, the internal displacements are min-
imized in a least square sense and fulfill automatically the
Eckart conditions.

The aim of this paper is to discuss the construction
of trajectories for the internal dynamics of macromolecules
from the time-local virtual displacements obtained from
Gauss’ principle. A straightforward proposition has been
made in Ref. 10, suggesting that the (almost) infinitesimal
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displacements obtained from an equidistantly sampled molec-
ular dynamics trajectory could be simply accumulated in the
laboratory frame. Here, it is shown that the accumulation
should instead be done in a common molecular-fixed frame,
which can be considered as the Eckart frame of the molecule
and which can be formally constructed by an accumulation of
the infinitesimal virtual rigid-body motions obtained from the
least constraint principle. The theoretical part of the paper is
presented in Sec. II, starting with a short review of the essen-
tial points of Ref. 10. In Sec. III, practical aspects concern-
ing the explicit construction of the molecule-fixed frame and
the corresponding internal-motion trajectories are discussed.
Two applications are presented in Sec. IV to illustrate the dif-
ference between the traditional method of removing global
motions and the one we propose. The paper is concluded by a
short discussion of the results.

II. THEORY

A. Virtual internal displacements

This section gives a short review of the relation between
the constraints for internal atomic motions in flexible macro-
molecules formulated by Eckart6 and Gauss’ principle of least
constraint,9, 11–13 which has been developed in Ref. 10. Ac-
cording to Gauss the motion of a mechanical system under
constraints can be derived from a local minimum principle.
Considering N point-like particles with given positions xα at
time t and masses mα , the principle can be formulated as

ξ = 1

2

N∑
α=1

mα

(
xα(t + δt) − x(c)

α (t + δt)
)2 = Min, (1)

where x(c)
α (t + δt) are the constrained positions at time

t + δt . The latter are thus obtained from a least squares fit
to the unconstrained positions at time t + δt . The time in-
crement δt must be small enough to permit the approxima-
tion xα(t + δt) ≈ xα(t) + δt ẋα(t) + δt2 Fα(t)/(2mα), where
the dot denotes a derivative with respect to time and Fα(t) is
the force acting on atom α. Suppose now that the coordinates
xα(t) = X(t) + rα(t) define the atomic positions in a “virtual
rigid molecule” at time t , where rα are the relative positions
with respect to a common rotation center, X. Within the time
span δt , the atomic positions in the virtual rigid molecule will
evolve to

x(c)
α (t + δt) = X(t) + rα(t) + δτ + δφ ∧ rα(t), (2)

where δτ and δφ define, respectively, a small translation and
rotation of the virtual rigid molecule. Here, the symbol “∧”
denotes a vector product. The vector δφ points into the direc-
tion of the rotation axis and its modulus is the rotation angle.
The differences between the real atomic positions, xα(t + δt),
and the virtual atomic positions, x(c)

α (t + δt), define the atomic
displacements due to the internal motions of the molecule,

δuα(t + δt) = xα(t + δt) − x(c)
α (t + δt). (3)

The virtual rigid-body displacement is performed according
to the minimum principle (1). Inserting here the form (2) for
the constrained positions at time t + δt leads to the necessary

conditions10

∂ξ

∂δτ
=

N∑
α=1

mαδuα(t + δt) = 0, (4)

∂ξ

∂δφ
=

N∑
α=1

mαrα(t) ∧ δuα(t + δt) = 0, (5)

which are the Eckart conditions for the internal atomic
displacements.6 The translational Eckart condition (4) and the
rotational Eckart condition (5) constitute a system of linear
equations for the components of δτ and δφ, which can be de-
coupled if X is taken to be the center of mass,

X = 1

M

∑
α

mαxα, (6)

where M is the total mass of the molecule. In this case, one
obtains

δτ = X(t + δt) − X(t) (7)

and the rotation vector is given by

δφ = θ (t)−1L(t)δt, (8)

where L =∑α mαrα ∧ ṙα is the angular momen-
tum and θ is the tensor of inertia, with components
θij =∑N

α=1 mα(|rα|2δij − rα,irα,j ). Both quantities are
referred to the laboratory frame.

B. Trajectories of internal motions

We consider a trajectory xα(n δt) ≡ xα(n), where δt is a
fixed small time increment justifying the approximations

δτ (n) ≈ δt Ẋ(n), (9)

δφ(n) ≈ δt ω(n), (10)

such that the constrained positions at t = nδt are approxi-
mated by

x(c)
α (n) ≈ xα(n − 1) + δt Ẋ(n − 1)+δt ω(n − 1) ∧ rα(n − 1).

Using that (xα(n) − xα(n − 1))/δt ≈ ẋα(n − 1), one obtains

δuα(n) = xα(n) − x(c)
α (n)

≈ δt{ẋα(n − 1) − Ẋ(n − 1) − ω(n − 1) ∧ rα(n − 1)}
= δt {ṙα(n − 1) − ω(n − 1) ∧ rα(n − 1)} ,

which becomes on a continuous time scale

δuα(t + δt) ≈ δt {ṙα(t) − ω(t) ∧ rα(t)} . (11)

One can now construct the trajectory of the internal motions
for a flexible macromolecule, by accumulating for each atom
its virtual displacements in the course of time. Here, it must
be taken into account that virtual displacements at different
times t and t ′ > t are related to virtual rigid molecules which
have been defined at, t − δt and t ′ − δt , respectively. Before
adding these virtual displacements they should first be trans-
formed to a common molecule-fixed frame, observing that the
molecule has undergone a global rotation within the time in-
terval t ′ − t . This point has not been considered in Ref. 10,
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but it is important as will be shown below. The trajectory rep-
resenting the internal motions of atom α then has the form

xint
α (t) = xα(0) +

∫ t

0
DT (τ ) · δuα(τ ), (12)

where D(t) is an orthogonal matrix describing the accumu-
lated rotation of the macromolecule and “T ” denotes a trans-
position. The matrix D(t) fulfills the differential equation

Ḋ(t) = �(t) · D(t), (13)

where � is the skew-symmetric matrix containing the
Cartesian coordinates of angular velocity in the laboratory
frame,

� =

⎛
⎜⎝

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞
⎟⎠ . (14)

Writing ω ∧ rα = � · rα , one finds from the definition of the
accumulated internal displacements that

∫ t

0
DT (τ ) · δuα(τ ) =

∫ t

0
dτ DT (τ ) · {ṙα(τ ) − �(τ )rα(τ )}

= ∣∣DT (τ ) · rα(τ )
∣∣t
0 −
∫ t

0
dτ

⎧⎨
⎩ḊT (τ ) · rα(τ ) + DT (τ ) · �(τ )rα(τ )︸ ︷︷ ︸

=0

⎫⎬
⎭

= DT (t) · rα(t) − rα(0).

Here, it was used that ḊT = (� · D)T = DT · �T = −DT · �

and that D(0) = 1. Inserting the above relation for the accu-
mulated internal displacements into the definition (12) for the
trajectory of internal motions leads to

xint
α (t) = X(0) + DT (t) · {xα(t) − X(t)} , (15)

which defines a roto-translation for the transformation
xα(t) → xint

α (t). Such a transformation guarantees that the in-
ternal energy of the molecule is left invariant,

U (x1(t), . . . , xN (t)) = U (xint
1 (t), . . . , xint

N (t)). (16)

The matrix D(t) is the transformation matrix from the
laboratory frame to a molecule-fixed frame, which can be
considered as the Eckart frame of the molecule. Its elements
define the projections of the moving molecule-fixed ba-
sis vectors εi(t) (i = 1, 2, 3) onto the fixed basis vectors
ej (j = 1, 2, 3),

Dij (t) = εT
i (t) · ej . (17)

While the center-of-mass vector X(t) can be easily obtained
from a given molecular dynamics trajectory, the construction
of the matrix D(t) is a less simple task that will be discussed
in Sec. III.

III. CONSTRUCTING THE ROTATION MATRIX

This section describes the approximate construction of
the rotation matrix D(t) and the corresponding trajectory of
internal motions xint

α (t) from a molecular dynamics trajectory
which is sampled with a finite time step 	t .

A. Discretization

In the general case, where � is time dependent, only a
formal solution of the defining Eq. (13) for D(t) can be given.
It follows from Eq. (13) that

D(t + 	t) = D(t) +
∫ t+	t

t

dτ �(τ ) · D(τ ), (18)

which may be approximated by

D(t + 	t) ≈ (1 + 	t �(t)) · D(t), (19)

if 	t tends to zero. Defining 	t = t/n, the rotation matrix is
thus given by the infinite product

D(t) = lim
n→∞

n∏
k=0

(
1 + t

n
�([k/n]t)

)
. (20)

One recognizes that D(t) = exp(�t) if � is constant, i.e., if
the molecule rotates with constant angular velocity.

For practical purposes, a discrete approximation of the
matrix D(t) can be obtained from an approximation of ex-
pression (20),

D(n) ≈
n−1∏
k=0

	D(k), (21)

where the increments 	D(k) are given by

	D(k) = exp(	t �(k)) (22)

and appear in the finite roto-translation

x(c)
α (k + 1) = X(k) + δτ (k) + 	D(k) · rα(k), (23)

which replaces relation (2) in the minimization problem (1).
If X is chosen to be the center of mass, problem (1) takes the
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form (n = 0, 1, 2, . . .),

ξ = 1

2

N∑
α=1

mα

(
rα(n + 1) − r(c)

α (n + 1)
)2 = Min, (24)

where the constrained positions with respect to the center of
mass at time n + 1 are obtained by a rotation from the posi-
tions at time n,

r(c)
α (n + 1) = 	D(n) · rα(n). (25)

Here, one may use that rint
α (n) = DT (n) · rα(n), which leads

to the alternative expression

r(c)
α (n + 1) = D(n + 1) · rint

α (n), (26)

observing that D(n + 1) = 	D(n) · D(n). Inserting either of
the expressions (25) or (26) for r(c)

α (n + 1) into the mini-
mization problem (24) makes the target function ξ defined in
Eq. (24) a function of the components of a rotation matrix,
which must be chosen such that ξ is minimal.

B. Superposition problem

A convenient way to solve the rotational superposition
problem (24) is to express the rotation matrix minimizing the
target function ξ in terms of four real quaternion parameters.
The general form for a rotation matrix in this parametrization
is14

D(q)=

⎛
⎜⎜⎝

q2
0 + q2

1 − q2
2 − q2

3 2(−q0q3 + q1q2) 2(q0q2 + q1q3)

2(q0q3 + q1q2) q2
0 + q2

2 − q2
1 − q2

3 2(−q0q1 + q2q3)

2(−q0q2 + q1q3) 2(q0q1 + q2q3) q2
0 + q2

3 − q2
1 − q2

2

⎞
⎟⎟⎠, (27)

where q2
0 + q2

1 + q2
2 + q2

3 = 1. Different variants for the solu-
tion of the rotational superposition problem with quaternions
have been discovered and described by several authors (see,
for example, Refs. 15–17 and the review Ref. 18) and more
details may be found in Ref. 10. Using the method described
in Ref. 17, the target function ξ given by relation[(24)] be-
comes a quadratic form in the quaternion parameters q,

ξ (q) = 1

2
qT · μ · q, (28)

If the coordinate sets to be superposed are {rα(n)} and
{rα(n + 1)} (see Eq. (25)), we have q ≡ 	q(n) and further-
more define rα ≡ rα(n). For the alternative form given by
Eq. (26), we have q ≡ q(n + 1) and rα ≡ rint

α (n) instead. For
both cases we also define r′

α ≡ rα(n + 1) and write the matrix
μ in the form

μ =
N∑

α=1

mαμα, (29)

where the atomic contributions are given by

μα =
(

(rα − r′
α)2 2(r′

α ∧ rα)T

2(r′
α ∧ rα) (rα + r′

α)21 − 2(r′
αrT

α + rαr′ T
α )

)
.

(30)
Minimization of the target function ξ (q) subject to the nor-
malization constraint of the quaternion parameters leads to
solving an eigenvector problem for a 4 × 4 matrix,

μ · q = λ q. (31)

Here, the eigenvalues represent the (mass-weighted) mean
square superposition error and the normalized eigenvector
corresponding to the smallest eigenvalue contains thus the
quaternion parameters describing the optimal solution. In

a more general context, the mass-weighting scheme of the
atomic contributions to the total superposition error can be
replaced by any set of positive numbers.

We note that the quaternion-based superposition method
also yields a measure for the orientational distance of two
molecular structures. If {rα} and {r′

α} are the sets of atomic
coordinates of the two structures under consideration, their
orientational distance can be defined as their Euclidean dis-
tance divided by the corresponding maximum distance. The
latter is given by the eigenvalue λmax of the eigenvector prob-
lem (31) and using the definition of the matrix μ, the orienta-
tional distance is given by19

	� =
√

μ11

λmax

. (32)

By construction 0 ≤ 	� ≤ 1.

C. Algorithmic considerations

If the choice (25) for r(c)
α (n + 1) is used in the target func-

tion (24), the accumulated rotation matrix D(n) and the trajec-
tory rint

α (n) are constructed as follows:

rα(n) 	→ rα(n + 1) yields 	q(n),

D(n + 1) = D(	q(n))D(n),

rint
α (n + 1) = DT (n + 1) · rα(n + 1),

(33)

setting D(0) = 1. The explicit matrix multiplication in the
accumulation of D and the corresponding accumulation of
numerical errors can be avoided by minimizing the target
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function (24) with the choice (26) for r(c)
α (n + 1). This leads

to

rint
α (n) 	→ rα(n + 1) yields q(n + 1),

D(n + 1) = D(q(n + 1)),

rint
α (n + 1) = DT (n + 1) · rα(n + 1),

(34)

with the starting point rint
α (0) = rα(0).

Finally, we note that approximations for the angular ve-
locity can be computed from the quaternion parameters 	q

obtained from the superposition fits according to scheme (33).
It follows from the expression (22) for the increment 	D(k)
and the general form (27) for a rotation matrix expressed in
quaternion parameters that (the time argument is dropped)⎛

⎜⎜⎜⎜⎝
	q0

	q1

	q2

	q3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

cos(ω	t/2)

sin(ω	t/2) nx

sin(ω	t/2) ny

sin(ω	t/2) nz

⎞
⎟⎟⎟⎟⎠ , (35)

where ω is the modulus of ω and nx, ny, nz are the compo-
nents of the unit vector n = ω/ω.

IV. APPLICATIONS

In the following, some examples will be discussed in
which the method described above is compared with the usual
approach of removing global motions from the molecular
dynamics trajectories of macromolecules, which consists of
aligning all configurations with a fixed reference structure.
Two examples are considered:

(a) the dynamics of the TRP-cage (tryptophan-cage)
miniprotein,20 which consists of only 20 amino acids,
and which is believed to be the smallest protein exhibit-
ing a stable fold (code 2JOF of the protein data bank
(PDB) Ref. 21),

(b) the folding of a polypeptide chain of the same se-
quence length (“C-tail,” in the following), taken from
the C-terminal region of the eukaryotic anti-association
factor 6, and believed to be very mobile and mostly
unstructured.

A. TRP-cage miniprotein

We performed one MD simulation of the TRP-cage
molecule at ambient conditions and one at T = 400 K and
normal pressure, in order to enhance internal motions in the
protein. As initial structure we used in both cases the crys-
tallographic coordinates deposited in entry 2JOF of the PDB,
adding the hydrogen atoms according to the known chemical
bond structure in amino acids. The protein was immersed in
a solvent of 7159 water molecules, choosing a cubic simu-
lation box with a box length of 6 nm and periodic boundary
conditions. All simulations were performed with the Molec-
ular Modeling Toolkit,22 using the AMBER99 force field,23

which includes the TIP3P force field24 for the simulation of
water molecules. Coulomb interactions were treated with the
method proposed by Wolf et al.,25 using a cutoff radius of

FIG. 1. Snapshots of the TRP-cage molecule taken from trajectories for the
internal dynamics at 300 K and 400 K, which have been created by aligning
the molecule (a) with the initial structure in the MD trajectory (“fit to first,”
snapshots in light gray) and (b) by employing the method presented in this
paper (“fit to preceding,” snapshots in dark blue).

1.4 nm. Tests of the method can be found in Refs. 26 and
27. For both temperatures, we performed equilibration runs
of 100 ps at constant temperature and pressure in the NpT en-
semble using the Nosé-Andersen extended system method,28

each followed by a production run of 2 ns simulation at con-
stant temperature in the NVT ensemble. For the integration
of the equations of motion we used a time step of 1 fs and
the protein configurations were stored every 20 fs for later
analysis.

Figure 1 displays some snapshots taken along the trajec-
tories for internal motions which have been obtained by align-
ing the molecule with the first configuration in the production
trajectory (light gray) and by using the method proposed in
this paper (dark blue). In the following, the two approaches
are referred to as “fit to first” and “fit to preceding,” respec-
tively. It should be noted that the resulting coordinate sets dif-
fer by a global rigid-body motion, if the same time frames are
compared, and the internal energy is thus strictly the same.
The deviation of the global orientation increases, however,
rapidly with time, and this effect is more pronounced for the
strongly heated protein at T = 400 K. To quantify this devia-
tion we display in Fig. 2 the corresponding orientational dis-
tance which is defined by relation (32). More important for
applications are the resulting differences for time averaged
quantities, such as static averages, time-correlation functions
and time-dependent mean square displacements (MSD). The
first comparison of the different methods to remove global

TABLE I. Total (mass-weighted) RMSF and limt→∞ W (t) values computed
for the TRP-cage molecule (at 300 and 400 K) and for the C-tail peptide. In
the first column, “ff” stands for the “fit to first” method and “fp” stands for
the “fit to preceding” method proposed in this paper.

Simulation 	 [nm] limt→∞ W (t) [nm2]

TRP 300 K ff 0.239 0.115
TRP 300 K fp 0.241 0.116

TRP 400 K ff 0.407 0.331
TRP 400 K fp 0.432 0.372

C-tail 300 K ff 0.553 0.612
C-tail 300 K fp 0.581 0.676
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FIG. 2. Time evolution of the orientational distance between the molecular
configurations of the TRP-cage molecule generated by the methods “fit to
first” and “fit to preceding.” The solid line corresponds to T = 300 K and the
dashed line to T = 400 K.

motions concerns the root mean square fluctuations (RMSF)
of the atoms in the TRP-cage protein. We define the total
RMSF as

	 =
√√√√ N∑

α=1

wα〈(rα − 〈rα〉)2〉, (36)

where 〈. . .〉 denotes an average over the MD trajectory and
wα are atomic weights with

∑N
α=1 wα = 1 (N is the number

of atoms in the protein). In our calculations we use mass-
weighting, i.e., wα = mα/M , with M being the total mass
of the protein. The RMSF values are displayed in the sec-
ond column of Table I. The RMSF values are almost equal
at T = 300 K, but at higher temperature (T = 400 K) the
difference is much more pronounced. So, we note that at
T = 400 K, the “fit to preceding” method leads to a greater
flexibility of the protein compared to the “fit to first” method.

The second comparison of the different methods con-
cerns the time-dependent mean-square displacement which is
defined as

W (t) =
N∑

α=1

wα〈[rα(t) − rα(0)]2〉, (37)

where wα are atomic weights with the same definition as men-
tioned previously. It measures how far (on average) the system
moves away from its original configuration in a given amount
of time and for confined diffusion the plateau value is related
to the RMSF,

lim
t→∞ W (t) = 2 	2. (38)

Figure 3 displays the mass-weighted average MSDs for the
TRP-cage molecule corresponding, respectively, to the “fit
to first” and “fit to preceding” trajectory. The comparison
shows that practically identical results are obtained for T

= 300 K, whereas differences appear for 400 K. Although
these differences are small in amplitude, they are not irrel-
evant since the form of the MSD changes. The asymptotic
values limt→∞ W (t) are shown in the third column of Table I
next to the values of 	 from which they were computed. As
we could expect from the trends of the MSD curves during the
first picoseconds (Fig. 3), the W (∞) values are similar at T

= 300 K and a little higher for the “fit to preceding” method
than for the “fit to first” method at 400 K.

FIG. 3. Average (mass-weighted) MSD for the internal motions of the TRP-
cage molecule for T = 300 K (black lines) and T = 400 K (gray lines).
For both temperatures the MSD is calculated from trajectories created by
the methods “fit to first” and “fit to preceding” (solid line and dashed line,
respectively).

B. C-tail

The C-tail polypeptide chain (sequence EDAQPESIS-
GNLRDTLIETYS in the one-letter code notation for residue
types) was simulated starting from a linear configuration cre-
ated by using the AMBER9 (Ref. 29) simulation package. All
equilibration and production runs were performed using the
AMBER03 (Ref. 30) force field and an implicit solvent. The
latter is described by the Generalized Born solvation model,
developed by Hawkins et al.,31, 32 where mean forces are ob-
tained from the estimation of the total solvation free energy
of the molecule into water. Initial equilibration of the lin-
ear structure was performed with progressive temperature re-
scaling from 0 K to 300 K with an increase of 50 K every
500 ps. The time step during this initial equilibration was
varied from 0.1 to 0.5 fs, in order to reduce the extent of
force variation and thus the probability of unphysical close
contacts. After a final equilibration simulation of 700 ps, per-
formed at constant temperature (300 K) and constant volume,
the production run of 40 ns was performed with an integra-
tion time-step of 1 fs in the NVT ensemble. Configurations of
the C-tail polypeptide chain were saved every 500 fs for later
analysis.

FIG. 4. Snapshots of the C-tail peptide. The coloring scheme is the same as
in Fig. 1.
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FIG. 5. Time evolution of the orientational distance between the molecular
configurations of the C-tail peptide generated by the methods “fit to first” and
“fit to preceding.”

Some snapshots of the folding path of C-tail are dis-
played in Fig. 4, where the configurations obtained by align-
ing the polypeptide with the “fit to first” method (light gray)
and by using the “fit to preceding” method (dark blue) are
shown at 0.5, 5, 20, and 40 ns. The progressively divergent
configurations obtained by these two methods become well
distinguishable after a few nanoseconds as also suggested by
the orientational distance 	� between corresponding config-
urations obtained by the two methods (see Fig. 5). This di-
vergence is due to the fact that the reference structure for
the “fit to first” method is almost completely extended and
thus very different from the folded structures in the trajectory.
Here, the reader should note that the slowly increasing value
of 	� from zero to a plateau value of 0.6 is strictly related
to the folding evolution: as the polypeptide reaches a more or
less folded conformation, 	� starts oscillating around an av-
erage value. The latter fact is due to the negligible difference
between the two methods when applied to folded conforma-
tions.

As for the TRP-cage simulation, we calculated the mass-
weighted average RMSDs (Table I) and MSDs (Fig. 6) in
order to explore the difference of the two fitting methods
on the internal dynamics of C-tail. As for the TRP-cage at
400 K, we note that the method proposed in this work leads
to a larger fluctuations compared to the conventional “fit to

FIG. 6. Average (mass-weighted) atomic mean square displacement for the
internal motions of the C-tail peptide computed from trajectories generated
by the methods “fit to first” and “fit to preceding.”

first” method, the difference being even more striking, as is to
be expected given the large orientational differences between
the two trajectories.

V. CONCLUSIONS

It has been shown that the construction of internal tra-
jectories for flexible macromolecules from a given molecular
dynamics trajectory can be achieved in a systematic way by
accumulating the virtual internal displacements obtained from
Gauss’ principle of least constraint in a molecule-fixed frame.
For a given time and a short time increment, these virtual dis-
placements are defined as the differences between the actual
displacements of the atoms in the molecule and those obtained
from a corresponding rigid-body motion within the same time
interval. The translation of the molecule-fixed frame is deter-
mined by the translational motion of the center of mass of the
molecule and its rotation is described by the accumulated in-
finitesimal rotations of the virtual rigid bodies which are used
to define the internal atomic displacements. The coordinate
transformation describing the extraction of internal motions
from the input trajectory can be written as a roto-translation
of the molecule and thus strictly preserves its internal poten-
tial energy.

The application to the dynamics of TRP-cage miniprotein
around its equilibrium conformation at ambient conditions
shows that the standard procedure for removing global mo-
tions from the trajectory of a macromolecule, which consists
of aligning its configurations with a fixed reference structure,
yields results that are practically identical with the procedure
proposed in this paper. When the protein is strongly heated,
such that it starts to explore non-native conformations,
the analysis of the respective trajectories displays slight
differences. If a folding process is considered, where the
conformation of the molecule under consideration changes
considerably during the simulation, the comparison with a
fixed reference structure is not appropriate for extracting in-
ternal motions and the method proposed in this paper should
be used instead. In this method, least-square fit alignments
are always made between neighboring steps in the trajectory,
and thus between configurations that differ only slightly.
The method does not depend on the arbitrary choice of a
reference configuration and yields the exact solution in the
limit 	t → 0. Since the computational effort is the same as
for the standard method, our method can replace it safely and
efficiently in all situations to extract the internal motions of
macromolecules from a given molecular dynamics trajectory.
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