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This paper addresses the question to which extent anisotropic atomic motions in proteins impact
angular-averaged incoherent neutron scattering intensities, which are typically recorded for powder
samples. For this purpose, the relevant correlation functions are represented as multipole series in
which each term corresponds to a different degree of intrinsic motional anisotropy. The approach is
illustrated by a simple analytical model and by a simulation-based example for lysozyme, consider-
ing in both cases the elastic incoherent structure factor. The second example shows that the motional
anisotropy of the protein atoms is considerable and contributes significantly to the scattering inten-
sity. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769782]

I. INTRODUCTION

Neutron scattering has proven to be a powerful tool for
investigating the structure and dynamics of condensed matter
on the atomic scale. Due to the dominant incoherent scatter-
ing cross section of hydrogen1, 2 it is essentially the sample-
averaged single-particle dynamics of these atoms which is
probed in neutron scattering experiments. References 3 and
4 give an overview on applications for studying, respectively,
polymer and protein systems, in which hydrogen accounts
for about 50% of the total number of atoms. A basic quan-
tity which can be obtained from elastic incoherent neutron
scattering is the mean square position fluctuation (MSPF)
of the hydrogen atoms in the sample, MSPF = 〈u2〉, where
u =

√
(x − 〈x〉)2 and x is the position of the scattering atom.

It is, unfortunately, also customary to use the term “mean
square displacement” (MSD) for 〈u2〉 (see, e.g., Ref. 4), which
is a permanent source of confusion with the time-dependent
MSD.5 The latter is defined as MSD(t) = 〈(x(t) − x(0))2〉,
with “t” being the time lag with respect to an arbitrarily cho-
sen time origin “0.” For this reason, we use here the term
“mean square position fluctuation.” The MSPF is usually ex-
tracted from the elastic incoherent structure factor (EISF) and
plays a central role in the study of the dynamical transition of
proteins.6–8 From its temperature dependence, one can, for ex-
ample, derive a softness parameter which is related to protein
function.9 The usual method to extract MSPFs from experi-
mental EISF data is based on the assumption that the EISF
has the simple isotropic Gaussian form

EISF(q) ≈ exp(−q2〈u2〉/3), (1)

where q = |q| is the modulus of the momentum transfer vector
in units of ¯. The samples are supposed to be macroscopically
isotropic, such that the observed EISF is the angular average
of the q-dependent EISF over the directions of q,

EISF(q) ≡ EISF(q). (2)

a)Electronic mail: gerald.kneller@cnrs-orleans.fr.

Most neutron scattering experiments on proteins are per-
formed for hydrated protein powders and for this reason ex-
pression (2) is often referred to as “powder average.” The ap-
proximation (1) is strictly valid only if all atoms in the system
move in an isotropic harmonic potential of identical curva-
ture. Motional heterogeneity, anharmonicity, and anisotropy
of the local potential lead to a deviation of the EISF from the
isotropic Gaussian form (1), which is in general only valid
if q2〈u2〉 � 1. Computer simulations are a particularly use-
ful tool to investigate the importance of non-Gaussian effects
in the EISF by an “ab initio” approach and several studies
with this aim have been undertaken in the past.10–14 Concern-
ing the particular aspect of anisotropic atomic motions, most
simulation work in relation to experimental data concerns X-
ray diffraction, since this technique gives site-specific infor-
mation on atomic motion, including anisotropy.15–17 To our
knowledge, Ref. 11 is the only work in which the impact of
anisotropic motions on neutron scattering intensities is ex-
plicitly discussed. The authors propose the quantity S2,aniso(q)
= exp(−〈q · u〉2) − exp(−q2〈u2〉/3) as an approximative
measure for the motional anisotropy of a single atom (here
the notation is slightly changed). They find that anisotropic
atomic motions have a negligible impact on the total EISF and
the result is explained by a mutual cancellation of the indi-
vidual atomic contributions. It is, however, important to note
that the validity of the proposed anisotropy measure is limited
by the Gaussian approximation, EISF(q) ≈ exp(−〈q · u〉2),
which implies that the scattering atom moves in a harmonic,
possibly anisotropic potential. Moreover, depending explic-
itly on the direction of q, it does not quantify the intrinsic
anisotropy of the atomic motions in the system under con-
sideration, which is probed by neutron scattering experiments
from powder samples.

To look deeper into the question in how far motional
anisotropy influences the form of powder-averaged incoher-
ent neutron scattering intensities, we develop in this paper
a general framework to quantify this effect. Our approach
is based on appropriate multipole expansions of the relevant
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correlation functions and we discuss in particular the impact
of motional anisotropy on the EISF and its cumulant expan-
sion. The theoretical description of anisotropy effects is il-
lustrated with an analytical example and with a molecular
dynamics (MD) simulation study of lysozyme. The paper is
organized as follows: Sec. II is devoted to the presentation of
the theoretical part, Sec. III contains the presentation of the
two examples, and the paper is concluded by a summary and
a short discussion of the results.

II. THEORY

A. Neutron scattering

The basic quantity measured in neutron scattering is the
dynamic structure factor,1, 2 S(q, ω), which is the Fourier
transform of the weighted double sum of quantum time cor-
relation functions, F(q, t), involving the positions xα of the
atomic nuclei in the scattering system,

S(q, ω) = 1

2π

∫ +∞

−∞
dt exp(−iωt)F(q, t), (3)

F(q, t) =
∑
α,β

{b∗
α,cohbβ,coh + δα,β |bα,inc|2}

×〈exp(iq · xα(t)) exp(−iq · xβ (0))〉. (4)

Here, q and ω are, respectively, the momentum and energy
transfer from the neutron to the sample in units of ¯ and
F(q, t) is called the total intermediate scattering function
(ISF). The brackets 〈. . . 〉 denote a quantum equilibrium en-
semble average over the initial positions xα ≡ xα(0) and the
argument t is a lag time with respect to the time origin “0.”
Since the sample is supposed to be in thermal equilibrium,
the arguments of xα and xβ in (4) can be shifted by an ar-
bitrary value τ (stationarity). The quantities bα,coh and bα,inc

are, respectively, the coherent and incoherent scattering length
of atom α. They can be complex and determine the strength
of the Fermi pseudopotential describing the neutron-nucleus
interaction.1, 2 In contrast to X-ray diffraction and diffusion,
there is no systematic relation between the scattering ampli-
tude and the size of the scattering atom. As mentioned ear-
lier, incoherent scattering from the smallest atom–hydrogen–
dominates, in fact, all other scattering processes. In the
following, we make the following assumptions:

1. The quantum time correlation functions appearing in the
ISF can be replaced by their classical counterparts. This
hypothesis is justified if the recoil energy of the scatter-
ing atom is much smaller than its thermal energy18 and
if quantum contributions to the ensemble averages can
be neglected.

2. The scattering system contains a large number of hydro-
gen atoms, such that the contributions to the scattering
intensity from the single-particle motions of these atoms
dominate those from other atoms, as well as contribu-
tions from collective modes.

3. The motions of the scattering atoms are confined in
space, such that the mean position of each atom is well
defined.

If hypotheses 1 and 2 are verified, the ISF can be approxi-
mated by

F(q, t) ≈ NH|bH,inc|2FH,s(q, t), (5)

where FH,s(q, t) is the average self-scattering contribution
from the NH hydrogen atoms in the system,

FH,s(q, t) = 1

NH

∑
α∈H

〈exp(iq · [xα(t) − xα(0)])〉. (6)

The corresponding EISF is defined as the long-time limit

EISFH(q) = lim
t→∞ FH,s(q, t). (7)

For systems in thermodynamic equilibrium, one may write
limt → ∞〈exp (iq · [xα(t) − xα(0)])〉 = |〈exp (iq · xα)〉|2,
which shows that the EISF is nonzero only if the mean val-
ues of the positions xα are bound, i.e., if the atomic motions
are confined in space (assumption 3). In this case, the inco-
herent ISF probes effectively the displacements of the atomic
positions with respect to their respective static averages,

uα = xα − 〈xα〉, (8)

and the EISF becomes

EISFH(q) = 1

NH

∑
α∈H

|〈exp(iq · uα)〉|2 . (9)

Assuming that the shifted correlation function F ′
H,s(q, t)

= FH,s(q, t) − EISFH(q) decays sufficiently quickly to zero,
such that the corresponding Fourier transform exists, the dy-
namic structure factor can be cast into the form

SH,s(q, ω) = EISFH(q)δ(ω)

+ 1

2π

∫ +∞

−∞
dt exp(−iωt)F ′

H,s(q, t), (10)

which shows that EISF determines, in fact, the contribu-
tion from elastic scattering. In real experiments, one mea-
sures the convolution of expression (10) with the instrumental
resolution.

B. Multipole expansion of the single-atom
scattering functions

1. Intermediate scattering function

In the following, we consider incoherent neutron scatter-
ing from a single (hydrogen) atom and write the ISF in the
compact form

F (q, t) = 〈exp(iq · �(t))〉 , (11)

where �(t) is the displacement of the scattering atom during
the lag time t with respect to an arbitrarily chosen time origin,

�(t) = x(t) − x(0). (12)

The dependencies of the ISF on the directions of both q
and �(t) can be separated by making use of the plane wave
expansion19

exp(iq · r) = 4π

∞∑
l=0

l∑
m=−l

iljl(qr)Ylm(�q)Y ∗
lm(�r ), (13)
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where q = |q|, r = |r|, and �q and �r comprise, respectively,
the spherical coordinates (θ , φ) of q and r. The symbol jl(.)
denotes the spherical Bessel function of first kind and order
l and Ylm(.) are the spherical harmonics. Using identity (13),
the ISF may be cast in the form of a multipole series,

F (q, t) = 4π

∞∑
l=0

l∑
m=−l

ilYlm(�q)〈jl(q�(t))Y ∗
lm(��(t))〉,

(14)

where �(t) = |�(t)| is the modulus of the displacement �(t)
and ��(t) defines its direction. As mentioned in the Introduc-
tion, incoherent neutron scattering experiments are usually
performed on macroscopically isotropic samples. This corre-
sponds to measuring the isotropic angular average

F (q, t) = 1

4π

∫
d�qF (q, t), (15)

noting that
∫

d�q . . . = ∫ π

0

∫ 2π

0 sin θdθdφ . . . is the integral
over the directions of the momentum transfer vector ex-
pressed in spherical coordinates, q = (q sin θ cos φ, q sin θ

sin φ, q cos θ ). Inserting here the series (14), only the term
for l = 0 is left on account of the orthonormality relation∫

d�Ylm(�)Y ∗
l′m′(�) = δll′δmm′ of the spherical harmonics,

F (q, t) = 〈j0(q�(t))〉. (16)

A powder average removes thus all information about the
motional anisotropy in the lag-time-dependent displacements
�(t).

In case of spatially confined motions, where �(t) = u(t)
− u(0), the ISF can be alternatively developed into a mul-
tipole series involving separately the directions of u(t) and
u(0). Writing the ISF in the form F(q, t) = 〈exp (iq · u(t))
exp (−iq · u(0))〉 and applying the plane wave expansion to
both factors in the ensemble average leads to

F (q, t) = (4π )2
∞∑
l=0

∞∑
l′=0

l∑
m=−l

l′∑
m′=−l′

Y ∗
l′m′(�q)Ylm(�q)

×〈ϕ∗
l′m′(q, 0)ϕlm(q, t)〉, (17)

where the variables ϕlm(q, t) are defined as

ϕlm(q, t) = jl(qu(t))Y ∗
lm(�u(t)). (18)

The powder average leads here to the series

F (q, t) =
∞∑
l=0

Fl(q, t), (19)

where the coefficients Fl(q, t) have the form

Fl(q, t) = 4π

l∑
m=−l

〈ϕ∗
lm(q, 0)ϕlm(q, t)〉. (20)

It follows from the transformation property of the spherical
harmonics under rotations of the coordinate system20, 21 that
the coefficients Fl(q, t) are invariant under such transforma-
tions. Since they do not depend on the direction of q, they
can be considered as multipole coefficients containing infor-
mation about the intrinsic anisotropy in the time-correlated

displacements u. If the latter are perfectly isotropic, the series
(19) reduces to a single term

F (q, t) = 〈j0(qu(t))j0(qu(0))〉. (21)

2. EISF

The multipole expansion of the EISF is obtained from
expression (17) by performing the limit t → ∞. Using that the
time correlation function of any two variables a and b fulfills
limt → ∞〈a(0)b(t)〉 = 〈a〉〈b〉 if the system is in thermodynamic
equilibrium, one obtains a series of the form

EISF(q)

= |〈exp(iq · u)〉|2

= (4π )2
∞∑
l=0

∞∑
l′=0

l∑
m=−l

l′∑
m′=−l′

Ylm(�q)Y ∗
l′m′ (�q)alm(q)a∗

l′m′(q),

(22)

where the amplitudes alm(q) are given by

alm(q) = 〈jl(qu)Y ∗
lm(�u)〉 = 〈ϕlm(q, 0)〉. (23)

Making again use of the plane wave expansion (13) and the
orthogonality of the spherical harmonics, one derives the use-
ful alternative expression

alm(q) = (−i)lY ∗
lm(�q)〈exp(iq · u)〉. (24)

Correspondingly to (19) the angular-averaged EISF can be ex-
pressed by a series of the form

EISF(q) =
∞∑
l=0

EISFl(q), (25)

with multipole coefficients

EISFl(q) = 4π

l∑
m=−l

|alm(q)|2 . (26)

For l = 0, one obtains the isotropic component

EISF0(q) = |〈j0(qu)〉|2 = ∣∣〈exp(iq · u)〉∣∣2
. (27)

We define δ
(L)
aniso(q) to be the error of the Lth order multi-

pole approximation to the angular-averaged EISF

δ
(L)
aniso(q) = EISF(q) −

L∑
l=0

EISFl(q), (28)

and δ
(0)
aniso(q) is thus the total anisotropy component, which

may be expressed in the concise form

δ
(0)
aniso(q) = |〈exp(iq · u)〉|2 − |〈exp(iq · u)〉|2. (29)

If follows from the positivity of the multipole coefficients
EISFl(q) that

δ
(L)
aniso(q) ≥ 0 (L = 0, 1, 2, . . .), (30)

where the equal sign holds for perfectly isotropic motions.
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C. Cumulant expansions

1. Intermediate scattering function

Writing the ISF in the form (11) shows that its Taylor
expansion around q = 0 gives access to the projected mo-
ments 〈(n · �(t))k〉, where n is the unit vector in the direction
of the momentum transfer vector q. These moments and the
corresponding cumulants, which are obtained from the corre-
sponding Taylor series of log (F(q, t)), have been extensively
discussed in the standard literature (see, for example, Refs. 5
and 22). Interesting in the context of this paper are the Taylor
expansion for the angular-averaged ISF,

F (q, t) =
∞∑

k=0

(−1)kq2k

(2k + 1)!
〈�2k(t)〉, (31)

and the corresponding cumulant expansion

F (q, t)

=exp

(
−q2

6
〈�2(t)〉+ q4

360
(3〈�4(t)〉−5〈�2(t)〉2)∓ . . .

)
.

(32)

For small times, such that q2�2(t) � 1, the isotropic Gaussian
approximation

F (q, t) ≈ exp

(
−q2

6
〈�2(t)〉

)
(33)

is always valid and we note that expression (33) is exact for
a few model systems, such as a freely diffusing particle in
an isotropic medium and a particle diffusing in an isotropic
harmonic potential.

2. EISF

To derive the cumulant expansion of the EISF, we use
expression (23), noting that

EISFl(q)
q→0∼ q2l (34)

on account of the asymptotic form jl(z) ∼ zl/(2l + 1)!! of
the spherical Bessel functions for small arguments z.19 Con-
sequently, the Taylor expansion of EISFl(q) contributes only
terms of order O ≥ 2l in q to the corresponding Taylor expan-
sion of the total angular-averaged EISF. Writing

EISF(q) =
∞∑

k=0

(−1)kq2kM2k, (35)

the moments

M2k = lim
t→∞

〈�2k(t)〉
(2k + 1)!

(36)

may thus be decomposed as

M2k =
k∑

l=0

M
(l)
2k , (37)

where M
(l)
2k is the contribution of multipole order l. For the

first few moments M2k, one finds explicitly

M0 = 1, (38)

M2 = 1

3

〈
u2

〉
︸ ︷︷ ︸

M
(0)
2

, (39)

M4 = 1

36
〈u2〉2 + 〈u4〉

60︸ ︷︷ ︸
M

(0)
4

+ 4π

225

2∑
m=−2

|〈u2Y2m(�u)〉|2
︸ ︷︷ ︸

M
(2)
4

. (40)

Here, it has been used that

u(l)
m =

√
4π

2l + 1
ulYlm(�u), m = −l, . . . , l, (41)

are the components of the irreducible tensor products of or-
der l, which are constructed from the components of u in the
spherical coordinate representation20

u
(1)
±1 = ∓ 1√

2
(ux ± iuy), u

(1)
0 = uz. (42)

On account of 〈ux, y, z〉 = 0 we have therefore 〈u(1)
m 〉 = 0 (m

= −1, 0, 1), and using the latter property one obtains M
(1)
2

= M
(1)
4 = 0. With the above prerequisites the cumulant ex-

pansion for the angular-averaged EISF up to order q4 is found
to be

EISF(q) = exp

(
−M2q

2 +
{
M4 − M2

2

2

}
q4 + . . .

)
. (43)

For q2〈u2〉 � 1, one can use the isotropic Gaussian approxi-
mation

EISF(q) ≈ exp

(
−q2

3
〈u2〉

)
, (44)

which follows also directly from expression (33), using that
limt → ∞〈�2(t)〉 = 2〈u2〉 for confined motions in space.

III. EXAMPLES

A. Anisotropic motion in a harmonic potential

To illustrate the influence of anisotropic atomic motions
on the EISF, we consider a simple model system, where the
scattering atom moves in an anisotropic harmonic potential

V (u) = K

2

(
u2

x + u2
y + 1

(1 + ε)2
u2

z

)
(45)

with K > 0 and ε > −1. Performing the ensemble average
with the Gaussian Boltzmann factor exp(−V (u)/(kBT )) (kB

denotes the Boltzmann constant and T the absolute tempera-
ture) the corresponding MSPF is found to be

〈u2〉 = σ 2(ε(ε + 2) + 3), (46)

where

σ =
√

kBT

K
. (47)

Introducing the amplitude A(q) = 〈exp (iq · u)〉, one obtains

A(q) = exp

(
−1

2

(
σ 2q2

x + σ 2q2
y + (1 + ε)2σ 2q2

z

))
, (48)
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0 1 2 3 4 5

0.001

0.01

0.1

1
EISF

FIG. 1. The solid black lines display EISF(q) corresponding to model (50)
in a log-square plot, where ε = 1, 2, . . . , 8 (from top to bottom). The red
dashed lines correspond to the isotropic Gaussian approximation (44) for ε

= 0, 1, 8, respectively.

such that

EISF(q)=|A(q)|2 =exp
(−(

σ 2q2
x +σ 2q2

y + (1 + ε)2σ 2q2
z

))
.

(49)

The isotropic angular average over the directions of q can be
calculated analytically. Expressing q in spherical coordinates,
q = q(sin θcos φ, sin θsin φ, cos θ ), and performing an aver-
age over the total solid angle, one arrives at23

EISF(q) = |A(q)|2 =
√

π exp(−q2σ 2)erf(qσ
√

ε(ε + 2))

2qσ
√

ε(ε + 2)
,

(50)

where erf(.) is the error function.19 According to (27), the
isotropic component EISF0(q) is found by performing first the
average of A(q) over the directions of q and taking the square
afterwards,23

EISF0(q)=|A(q)|2 = π exp(−q2σ 2)erf(qσ
√

ε(ε + 2)/2)2

2q2σ 2ε(ε + 2)
.

(51)

In the limit ε → 0, where the potential V (u) becomes
isotropic, the isotropic Gaussian form (1) for the EISF is ex-
act and the angular-averaged EISF coincides with its isotropic
component,

lim
ε→0

EISF(q) = lim
ε→0

EISF0(q) = exp
(−q2σ 2

)
. (52)

Figure 1 shows the model EISF (50) as a log-square plot,
varying the anisotropy parameter according to ε = 1, 2, . . . ,
8 from top to bottom (solid black lines). In addition, we show
the isotropic Gaussian approximation (44) for ε = 0, 1, 8, re-
spectively (red dashed lines).

Concerning the anisotropy corrections of EISF(q), it fol-
lows from the form of the potential V (u) that EISF1(q) = 0
and that EISF2(q) = 4π |a20(q)|2. One finds explicitly23

EISF2(q) = 5 exp(−q2σ 2((ε + 1)2 + 1))

16q6σ 6ε3(ε + 2)3

× (
√

2π exp(q2σ 2(ε + 1)2/2)

× (q2σ 2ε(ε + 2) − 3)erf(qσ
√

ε(ε + 2)/
√

2)

+ 6qσ
√

ε(ε + 2) exp(q2σ 2/2))2. (53)

0.5 1.0 1.5 2.0 2.5 3.0
qΣ

0.2

0.4

0.6

0.8

1.0

EISF

FIG. 2. Model EISF according to (50) for ε = 4 (solid black line), the
isotropic term EISF0(q) (black dashed line), and the multipole term EISF2(q)
(black dotted line). The red dashed corresponds again to the Gaussian approx-
imation.

Figure 2 shows the model EISF (50) for ε = 4 together with
the multipole terms EISF0(q), EISF2(q), and the isotropic
Gaussian approximation. The value for ε is chosen to be com-
patible with the average anisotropy of atomic motions in the
simulation study of lysozyme which will be presented in Sec.
III B. Figure 3 displays the corresponding errors δ

(L)
aniso(q) for

L = 0 and L = 2 together with the error for the isotropic
Gaussian approximation. The corresponding relative errors
δ(q)/EISF(q) are displayed in Fig. 4. We note that the ab-
solute error for the isotropic Gaussian approximation cor-
responds to the angular average of the anisotropy measure
S2,aniso(q) introduced in Ref. 11.

We finally give the first two terms of the cumulant expan-
sion for the model EISF. Writing

EISF(q) = exp
(−c2q

2 + c4q
4 ∓ . . .

)
, (54)

one obtains from (50)

c2 = 1

3
σ 2(ε(ε + 2) + 3), (55)

c4 = 2

45
σ 4ε2(ε + 2)2. (56)

These expressions are to be compared with the general
form (43) for the cumulant expansion of the angular av-
eraged EISF. The moments M2 and M4 can be computed

0.5 1.0 1.5 2.0 2.5 3.0
qΣ

0.05

0.10

0.15

Error

FIG. 3. The errors δ
(0)
aniso(q) (black dashed line) and δ

(2)
aniso(q) (black dot-

ted line) corresponding to the multipole approximations of the model EISF
shown in Fig. 2. The red dashed line represents the error of the Gaussian
approximation.
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FIG. 4. Relative errors δ(q)/EISF(q) corresponding to the absolute errors
shown in Fig. 3.

analytically by expressing the potential V (u) in spherical co-
ordinates {u, θ , φ},

V (u, θ ) = Ku2(2 + ε(ε + 2)(1 − cos(2θ )))

4(ε + 1)2
, (57)

and performing the ensemble averages 〈. . . 〉 in these vari-
ables. Since the potential does not depend on φ the only multi-
polar contribution to M4 is the term (4π /225)|〈u2Y2, 0(�u)〉|2.
With these prerequisites one obtains23

M2 = 1

3
σ 2(ε(ε + 2) + 3), (58)

M4 = 1

30
σ 4(ε(ε + 2)(3ε(ε + 2) + 10) + 15). (59)

Inserting these results into c2 = M2 and c4 = M4 − M2
2 /2 (cf.

Eq. (43)) the cumulants (55) and (56), respectively, are re-
trieved.

B. Molecular dynamics simulation study of lysozyme

To analyze the impact of anisotropic motions on the
powder-averaged EISF of a realistic system, we performed
a MD simulation of a lysozyme molecule in water. As
starting structure, we used entry 1IO5 of the Protein Data
Bank (PDB).24 Adding the hydrogen atoms and 6805 wa-
ter molecules as solvent lead to a total system size of
22 376 atoms. The simulations were performed with the
Molecular Modeling Toolkit,25 using the all-atom force field
AMBER9926 with periodic boundary conditions. Electro-
static interactions were treated with the method proposed by
Wolf et al.,27 using a cutoff radius of 1.4 nm. The integration
time step was set to 1 fs and coordinates were saved every
50 fs for further analysis. After a preliminary minimization of
the PDB structure the system was first equilibrated at constant
temperature (300 K) and constant pressure (1 bar) using the
Nosé-Andersen method.28 The equilibrated system was then
prolongated for a production run of 0.5 ns.

From the MD trajectory, we computed the exact angular-
averaged EISF, performing a weighted sum over all 1961 pro-
tein atoms and applying weighting factors ∝ |bα,inc|2. The cal-
culation was performed with the program nMoldyn,29 using a
q-interval of �q = 0.25/nm and averaging isotropically over
up to 100 q-vectors per q-shell. The result is shown in Fig. 5
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qΣ0.0
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0.6

0.8
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FIG. 5. Atom- and angular-averaged EISF for lysozyme computed from MD
simulation (solid line) and the corresponding isotropic component (dashed
line).

(solid line), together with the isotropic term EISF0(q) (dashed
line), which was computed as EISF0(q) = |〈j0(qu)〉|2 (cf.
Eq. (27)). To enable a comparison with the analytical example
given before, the displayed functions are plotted on a dimen-
sionless qσ -scale. Here,

σ =
√

〈u2〉a/3 = 0.172 nm, (60)

where 〈. . . 〉a is the average over the atoms of the lysozyme
molecule. The deviation between the full angular-averaged
EISF and the isotropic term being far from negligible, we
analyzed this discrepancy in more detail by computing the
motional anisotropies for the individual atoms from the re-
spective displacement correlation matrix (the atomic index α

is dropped),

C =
⎛
⎝

〈
u2

x

〉 〈uxuy〉 〈uxuz〉
〈uyux〉

〈
u2

y

〉 〈uyuz〉
〈uzux〉 〈uzuy〉 〈u2

z〉

⎞
⎠ . (61)

Denoting the (positive) eigenvalues of C as λk (k = 1, 2, 3),
we define the motional anisotropy through the dimensionless
parameter

ε =
√

λmax

λmin
− 1. (62)

If the atoms move in a harmonic potential of the form (45),
expression (62) equals the parameter ε in this potential.
Figure 6 displays a histogram of ε for the 1961 atoms in the
lysozyme molecule. The ε-values range between εmin = 1.17

1 2 3 4 5 6 7
Ε0

50

100

150

FIG. 6. Motional anisotropy for the atoms in lysozyme. The parameter ε is
defined through Eq. (62).
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and εmax = 7.54, with a mean anisotropy of

〈ε〉a ≈ 3.5. (63)

The motional anisotropy of the atoms in lysozyme is thus sub-
stantial.

IV. SUMMARY AND CONCLUSION

We have derived multipole and cumulant expansions for
the ISF and the EISF of a single atom in a macroscopi-
cally isotropic sample which enable a systematic quantifi-
cation of contributions from motional anisotropy. One could
naïvely expect that performing powder averages of the scat-
tering intensities removes all information on anisotropic dis-
placements, but the result depends on the meaning of the term
“displacement.” Considering first the angular-averaged ISF
for a single atom, we have shown that any information about
motional anisotropy is, indeed, lost if the latter is described by
the lag-time-dependent displacement �(t). Information about
the anisotropy in the displacement u(t) with respect to the re-
spective static mean position is, in contrast, retained and the
angular-averaged EISF is influenced by the static anisotropy
of this dynamical variable. Due to the positivity of the mul-
tipole coefficients EISFl(q) for a single atom, contributions
from different atoms in a macromolecular system cannot av-
erage out, in contrast to what is stated in Ref. 11.

The impact of anisotropic atomic motions on a powder-
averaged EISF have been illustrated by a simple analytical
example and by a MD simulation study for lysozyme. The lat-
ter clearly demonstrates that anisotropic atomic motions con-
tribute substantially to the EISF of a realistic system if the
condition q2〈u2〉 � 1 for the isotropic Gaussian approxima-
tion is not met. If the latter is used beyond the range of its va-
lidity, one obtains a more or less pronounced overestimation
of the MSPF (see Fig. 1). Using the correlation matrices of the
individual atomic position fluctuations we have shown that
the motional anisotropy leads to a broad distribution for the
ellipticity of the individual motions, with an average value of
ε = 3.5. Here, the effects of motional anisotropy, heterogene-
ity, and anharmonic effects are, or course, mixed, but the com-
parison to the “pure” case with comparable ellipticity, which
is treated in the analytical example, confirms that the impact
of motional anisotropy on the powder-averaged EISF is im-
portant.

The question which remains to be answered is how mo-
tional anisotropy can be accounted for in models for the EISF.
In Ref. 13, it has been shown that good agreement between
EISFs obtained from MD simulations and normal mode anal-
ysis can be obtained by using a model for motional het-
erogeneity in which the atoms in protein perform individu-
ally isotropic motions in a harmonic potential, such that the
isotropic Gaussian approximation (1) for a single atom is
correct. Comparing, however, the distribution of the MSPFs

from the model and from simulation reveals that the motional
heterogeneity is nevertheless not perfectly represented by the
proposed model, as far as large MSPFs due to soft modes are
considered. Here anisotropy plays, in fact, a more important
role as for high frequency oscillations of stiff bonds. There
seems thus to be some room for an improvement of the model,
but one must be aware that neither simulation nor experimen-
tal data are precise enough to fit the corresponding additional
parameters unambiguously.
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